题文
答案
据专家权威分析,试题“今年我市体育中考的现场选测项目中有一项是“排球30秒对墙垫球”,..”主要考查你对 统计表,中位数和众数 等考点的理解。关于这些考点的“档案”如下:
统计表中位数和众数
考点名称:统计表
统计表构成及格式:一般由表头、行标题、列标题和数字资料四个主要部分组成,必要时可以在统计表的下方加上表外附加。①表头应放在表的上方,它所说明的是统计表的主要内容。②行标题和列标题通常安排在统计表的第一列和第一行,它所表示的主要是所研究问题的类别名称和指标名称,通常也被称为“类”。③表外附加通常放在统计表的下方,主要包括资料来源、指标的注释、必要的说明等内容。结构:①总标题――概括统计表中全部资料的内容,是表的名称。②横行标题――表示各组的名称,它说明统计表要说明的对象,是横行的名称。③纵栏标题――表示汇总项目即统计指标的名称。④数字资料――是各组、各汇总项目的数值。列在各横行标题与各纵栏标题交叉处,即统计表的右下方。内容构成:主词――是说明总体的,它可以是各个总体单位的名称、总体各个分组名称。行式上表现为横行标题。宾词――是说明总体的指标名称和数值的。形式上表现为纵栏标题和指标数值。
统计表分类:统计表形式繁简不一,通常是按项目的多少,分为单式统计表与复式统计表两种。只对某一个项目数据进行统计的表格,称为单式统计表,也称之为简单统计表。统计项目在2个或2个以上的统计表格,称之为复式统计表。1、按作用不同:统计调查表、汇总表、分析表。2、按分组情况不同:简单表、简单分组表、复合分组表。①简单表:即不经任何分组,仅按时间或单位进行简单排列的表。②简单分组表:即仅按一个标志进行分组的表。③复合分组表:即按两个或两个以上标志进行层叠分组的表。
统计表设计:由于使用者的目的以及统计数据的特点不同,统计表的设计在形式和结构上会有较大差异,但设计的基本要求是一致的。总体上来说,统计表的设计应符合科学、实用、简练、美观的要求。具体来说设计统计表时要注意以下几点:1.合理安排统计表的结构。比如行标题、列标题、数字资料的位置应安排合理。2.表头一般应包括表号、总标题和表中数据的单位等内容。总标题应简明确切地概括出统计表的内容,一般需要表明统计数据的时间、地点以及何种数据,即标题内容应满足3W(统计数据的时间、地点、何种数据的简称)要求。3.如果表中的全部数据都是同一计量单位,可放在表的右上角标明,若各指标的计量单位不同,则应放在每个指标后或单列出一列标明。4.表中的上下两条线一般用粗线,中间的其他线要用细线,这样使人看起来清楚、醒目。5.在使用统计表时,必要时可在表的下方加上注释,特别要注明资料来源,以表示对他人劳动成果的尊重,方便读者查阅使用。
统计表制作规则:1、统计表一般为横长方形,上下两端封闭且为粗线,左右两端开口。 2、统计表栏目多时要编号,一般主词部分按甲、乙、丙;宾词部分按(1)(2)等次序编号。 3、统计表总标题应简明扼要,符合表的内容。 4、主词与宾词位置可互换。各栏排列次序应以时间先后、数量大小、空间位置等自然顺序编排。 5、计量单位一般写在表的右上方或总栏标题下方。 6、表内资料需要说明解释部分,如:注解、资料来源等,写在表的下方。7、填写数字资料不留空格,即在空格处划上斜线。统计表经审核后,制表人和填报单位应签名并盖章,以示负责。
考点名称:中位数和众数
平均数、中位数和众数异同:一、相同点平均数、中位数和众数这三个统计量的相同之处主要表现在:都是来描述数据集中趋势的统计量;都可用来反映数据的一般水平;都可用来作为一组数据的代表。二、不同点它们之间的区别,主要表现在以下方面。1、定义不同平均数:一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数。中位数:将一组数据按大小顺序排列,处在最中间位置的一个数叫做这组数据的中位数 。众数:在一组数据中出现次数最多的数叫做这组数据的众数。2、求法不同平均数:用所有数据相加的总和除以数据的个数,需要计算才得求出。中位数:将数据按照从小到大或从大到小的顺序排列,如果数据个数是奇数,则处于最中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数是这组数据的中位数。它的求出不需或只需简单的计算。众数:一组数据中出现次数最多的那个数,不必计算就可求出。3、个数不同在一组数据中,平均数和中位数都具有惟一性,但众数有时不具有惟一性。在一组数据中,可能不止一个众数,也可能没有众数。4、呈现不同平均数:是一个“虚拟”的数,是通过计算得到的,它不是数据中的原始数据。中位数:是一个不完全“虚拟”的数。当一组数据有奇数个时,它就是该组数据排序后最中间的那个数据,是这组数据中真实存在的一个数据;但在数据个数为偶数的情况下,中位数是最中间两个数据的平均数,它不一定与这组数据中的某个数据相等,此时的中位数就是一个虚拟的数。众 数:是一组数据中的原数据 ,它是真实存在的。5、代表不同平均数:反映了一组数据的平均大小,常用来一代表数据的总体 “平均水平”。中位数:像一条分界线,将数据分成前半部分和后半部分,因此用来代表一组数据的“中等水平”。众数:反映了出现次数最多的数据,用来代表一组数据的“多数水平”。这三个统计量虽反映有所不同,但都可表示数据的集中趋势,都可作为数据一般水平的代表。6、特点不同平均数:与每一个数据都有关,其中任何数据的变动都会相应引起平均数的变动。主要缺点是易受极端值的影响,这里的极端值是指偏大或偏小数,当出现偏大数时,平均数将会被抬高,当出现偏小数时,平均数会降低。中位数:与数据的排列位置有关,某些数据的变动对它没有影响;它是一组数据中间位置上的代表值,不受数据极端值的影响。众数:与数据出现的次数有关,着眼于对各数据出现的频率的考察,其大小只与这组数据中的部分数据有关,不受极端值的影响,其缺点是具有不惟一性,一组数据中可能会有一个众数,也可能会有多个或没有 。7、作用不同平均数:是统计中最常用的数据代表值,比较可靠和稳定,因为它与每一个数据都有关,反映出来的信息最充分。平均数既可以描述一组数据本身的整体平均情况,也可以用来作为不同组数据比较的一个标准。因此,它在生活中应用最广泛,比如我们经常所说的平均成绩、平均身高、平均体重等。中位数:作为一组数据的代表,可靠性比较差,因为它只利用了部分数据。但当一组数据的个别数据偏大或偏小时,用中位数来描述该组数据的集中趋势就比较合适。众数:作为一组数据的代表,可靠性也比较差,因为它也只利用了部分数据。。在一组数据中,如果个别数据有很大的变动,且某个数据出现的次数最多,此时用该数据(即众数)表示这组数据的“集中趋势”就比较适合。