如图所示,固定的光滑金属导轨间距为L,导轨电阻不计,上端a、b间接有阻值为R的电阻,导轨平面与水平面的夹角为θ,且处在磁感应强度大小为B、方向垂直于导轨平面向上的匀强磁

◎ 题目

如图所示,固定的光滑金属导轨间距为L,导轨电阻不计,上端a、b间接有阻值为R的电阻,导轨平面与水平面的夹角为θ,且处在磁感应强度大小为B、方向垂直于导轨平面向上的匀强磁场中.质量为m、电阻为r的导体棒与固定弹簧相连后放在导轨上.初始时刻,弹簧恰处于自然长度,导体棒具有沿轨道向上的初速度v0.整个运动过程中导体棒始终与导轨垂直并保持良好接触.已知弹簧的劲度系数为k,弹簧的中心轴线与导轨平行.
(1)求初始时刻通过电阻R的电流I的大小和方向;
(2)当导体棒第一次回到初始位置时,速度变为v,求此时导体棒的加速度大小a;
(3)导体棒最终静止时弹簧的弹性势能为Ep,求导体棒从开始运动直到停止的过程中,电阻R上产生的焦耳热Q.
魔方格

◎ 答案


魔方格

(1)棒产生的感应电动势E1=BLv0
通过R的电流大小I1=
E1
R+r
=
BLv0
R+r

根据右手定则判断得知:电流方向为b→a            
(2)棒产生的感应电动势为E2=BLv
感应电流I2=
E2
R+r
=
BLv
R+r

棒受到的安培力大小F=BIL=
B2L2v
R+r
,方向沿斜面向上,如图所示.
根据牛顿第二定律 有 mgsinθ-F=ma
解得 a=gsinθ-
B2L2v
m(R+r)

(3)导体棒最终静止,有 mgsinθ=kx
弹簧的压缩量x=
mgsinθ
k

设整个过程回路产生的焦耳热为Q0,根据能量守恒定律 有
  
1
2
m
v20
+mgxsinθ=EP+Q0

解得 Q0=
1
2
m
v20
+
(mgsinθ)2
k
-EP

电阻R上产生的焦耳热Q=
R
R+r
Q0=
R
R+r
[
1
2
m
  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐
如图所示,两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L,导轨上面横放着两根导体棒ab和cd,构成矩形回路,两根导体棒的质量皆为m,电阻皆为R,回路
如图所示,两根足够长的固定
如图所示电路,两根光滑金属导轨,平行放置在倾角为θ的斜面上,导轨下端接有阻值为R的电阻,导轨电阻不计,斜面处于竖直向上的磁场中,金属棒ab受到沿斜面向上与金属棒垂直的
如图所示电路,两根光滑金属
如图所示,一足够长的光滑平行金属轨道,其轨道平面与水平面成θ角,上端用一电阻R相连,处于方向垂直轨道平面向上的匀强磁场中.质量为m、电阻为r的金属杆ab,从高为h处由静止
如图所示,一足够长的光滑平
如图所示,光滑斜面的倾角θ=30°,在斜面上放置一矩形线框abcd,ab边的边长为1m,bc边的边长为0.8m,线框的质量M=4kg,电阻为0.1Ω,线框通过细线绕过光滑的定滑轮与重物相连
如图所示,光滑斜面的倾角θ
如图所示,光滑水平面上有正方形金属线框abcd,边长为L、电阻为R、质量为m.虚线PP’和QQ’之间有一竖直向上的匀强磁场,磁感应强度为B,宽度为H,且H>L.线框在恒力F0作用下由
如图所示,光滑水平面上有正