婵ê鐡ㄥΣ鎼佹儑閸忕厧鐨炬俊顖d悍缁辨繄浠︽潏銊π﹂柣顏勵槸閸㈡煡鎳曞銉㈠亾閸屾侗鍎橀梻鍌ゅ枦椤㈡垶绂嶉崫鍕闂侇叏缍€缁旂喖鏁嶉悢鐑樼畳闁活亣鍋愬▔鈺呮儎閸繍妲遍柕鍡楀€规晶鐘虫叏鐎n喒鍋撴担瑙勑氱憸鐗堝釜缁辨繈宕i崼銉㈠亾娴e憡鍋樼憸鐗堝笒楠炴捇濡撮崒婵嗩仧闁告帞澧楅惈娆撳础濡ゅ嫬鍨佸☉鎾筹攻濡差剟鏁嶇仦钘夌.濞戞挸娲ら幏浼村及閵夈倗绉堕柕鍡嫹
曲线上某处的曲率半径反映的是曲线的弯曲程度,曲率半径越小,说明曲线弯曲的程度越高;曲率半径相同,曲线弯曲程度相同.如图所示,发射卫星时先让卫星在近地轨道1上做圆周运

◎ 题目
曲线上某处的曲率半径反映的是曲线的弯曲程度,曲率半径越小,说明曲线弯曲的程度越高;曲率半径相同,曲线弯曲程度相同.如图所示,发射卫星时先让卫星在近地轨道1上做圆周运动,后让卫星在以地球为一个焦点的椭圆轨道2上运动,最后让卫星进入同步轨道3做圆周运动.已知地球的半径为R,地球表面的重力加速度为g,同步轨道的半径为r0,卫星的质量为m0.当质量为m的卫星离地心的距离为r时,其引力势能的表达式为Ep=-
(1)求卫星在近地轨道的线速度v1,和在同步轨道的线速度v3. (2)卫星在椭圆轨道2上近地点处、远地点处的运动均可当作圆周运动处理,圆周运动的半径可用近、远地点处的曲率半径ρ(未知)来表示,求卫星在轨道2上运动时经过近地点的速率”:和远地点的速率v2′之比. (3)需要给卫星提供多少能量才能使其从轨道2的远地点变轨到轨道3上? ![]() |
◎ 答案
(1)根据万有引力提供向心力, 对于近地卫星,由于卫星贴近地球表面,则 G
对于同步卫星,有 G
又对于物体在地球表面时,万有引力近似等于重力,则有 m′g=G
由①②③解得,v1=
(2)由题,卫星在椭圆轨道2上近地点处、远地点处的运动均可当作圆周运动处理,则得 v1′=v1,r2′=v2, 所以v1′:v2′=
|