如图1所示,竖直放置的截面积为S、匝数为N、电阻为R的线圈两端分别与两根相距为L的倾斜光滑平行金属导轨相连.导轨足够长,其轨道平面与水平面成a角,线圈所在空间存在着方向

◎ 题目

如图1所示,竖直放置的截面积为S、匝数为N、电阻为R的线圈两端分别与两根相距为L 的倾斜光滑平行金属导轨相连.导轨足够长,其轨道平面与水平面成a角,线圈所在空间存在着方向平行于线圈轴线竖直向下的均匀磁场B1,磁感应强度Bl随时间t的变化关系如图2所示,导轨所在空间存在垂直于轨道平面的匀强磁场B2.设在t=0到t=0.2s的时间内,垂直两根导轨放置的质量为m的金属杆静止在导轨上,t=0.2s后,由于B1保持不变,金属杆由静止开始沿导轨下滑,经过足够长的时间后,金属杆的速度会达到一个最大速度vm.已知:S=0.00l m2,N=l00匝,R=0.05Ω,a=300,L=0.1m,B2=0.2T,g取l0m/s2.(除线圈电阻外,其余电阻均不计,且不考虑由于线圈中电流变化而产生的自感电动势对电路的影响).
(1)求金属杆的质量m并判断磁场B2的方向;
(2)求金属杆在导轨上运动的最大速度vm;
(3)若金属杆达到最大速度时恰好进入轨道的粗糙部分,轨道对杆的滑动摩擦力等于杆所受重力的一半,求棒运动到最大速度后继续沿轨道滑动的最大距离Xm及此过程中回路中产生的焦耳热Q.
魔方格

◎ 答案

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐
(1)在t=0到t=0.2s的时间内,金属杆静止在导轨上
            线圈产生的感应电动势   E=N
△Φ
△t
=N
B1S
△t

            闭合电路中的电流       I=
E
R

            金属杆所受到的安培力   F=B2IL
           对金属杆,由平衡条件得 mgsinα=F
       由上述程式解得       m=4×10-3kg
       磁场B2的方向垂直导轨向下.
(2)在t=0.2s后,由于B1保持不变,金属杆由静止沿斜面下滑,
根据题意,当金属杆达到最大速度时,杆中电流和(1)问中电流相等.
     
B22
L2vm
R
=mgsinα
           得到vm=2.5m/s
(3)金属运动到最大速度后轨道变得粗糙后,金属杆开始减速下滑
   对金属杆,由牛顿第二定律,得-
B22
L2v
R
=-m
△v
△t

∑(
B22
L2v
R
△t)=∑(m△v)
        得到
B22
L2xm
R
=m
vm
            解得xm=1.25m
    由能量转化和守恒定律得
1
2
m
v2m
+mgxmsinα=
1
2
mgxm
+Q
            解之得Q=0.0125J
一矩形线框置于匀强磁场中,线框平面与磁场方向垂直,先保持线框的面积不变,将磁感应强度在1s时间内均匀地增大到原来的两倍,接着保持增大后的磁感应强度不变,在1s时间内,
一矩形线框置于匀强磁场中,
如图所示,在边长为a的正方形区域内有匀强磁场,磁感应强度为B,其方向垂直纸面向外,一个边长也为a的正方形导线框架EFGH正好与上述磁场区域的边界重合,现使导线框以周期T绕
如图所示,在边长为a的正方形
如图所示,闭合开关S,将条形磁铁插入闭合线圈,第一次用时0.2s,第二次用时0.4s,并且两次磁铁的起始和终止位置相同,则()A.第一次线圈中的磁通量变化较快B.第一次电流表
如图所示,闭合开关S,将条形
如图所示,Q是单匝金属线圈,MN是一个螺线管,它的绕线方法没有画出,Q的输出端a、b和MN的输入端c、d之间用导线相连,P是在MN的正下方水平放置的用细导线绕制的软弹簧线圈.若
如图所示,Q是单匝金属线圈,
半径为r、电阻为R的n匝线圈在边长为l的正方形abcd之外,匀强磁场充满并垂直穿过该正方形区域,如图甲所示.当磁场随时间的变化规律如图乙所示时,则穿过线圈磁通量的变化率为
半径为r、电阻为R的n匝线圈在
上一篇:如图甲所示,质量m=6.0×10-3kg,边长L=0.20m,电阻R=1.0欧的正方形单匝金属线框abcd,置于请教等于30°的绝缘斜面上,ab边沿着水平方向,线框的下半部分处于垂直斜面向上的     下一篇:一个100匝的闭合圆形线圈,总电阻为15.0Ω?,面积为50cm2,放在匀强磁场中,线圈平面跟磁感线方向垂直.匀强磁场的磁感应强度B随时间t变化的规律如图(b)所示.设t=0时,B的方向
零零教育社区:论坛热帖子