已知a,b,c均为正数,且ab+c=bc+a=ca+b=k,则下列4个点中,在反比例函数y=kx图象上的点的坐标是()A.(1,12)B.(1,2)C.(1,-12)D.(1,-1)-数学

题文

已知a,b,c均为正数,且
a
b+c
=
b
c+a
=
c
a+b
=k,则下列4个点中,在反比例函数y=
k
x
图象上的点的坐标是(  )
A.(1,
1
2
B.(1,2)C.(1,-
1
2
D.(1,-1)
题型:单选题  难度:中档

答案

已知a,b,c均为正数,且
a
b+c
=
b
c+a
=
c
a+b
=k,
根据合比性质,得到k=
a+b+c
b+c+c+a+a+b
=
1
2

因而反比例函数y=
k
x
的解析式是y=
1
2x

然后检验一下各个选项是否满足解析式,
满足解析式的点就在函数图象上.
故选A.

据专家权威分析,试题“已知a,b,c均为正数,且ab+c=bc+a=ca+b=k,则下列4个点中,在反..”主要考查你对  反比例函数的图像,比例的性质  等考点的理解。关于这些考点的“档案”如下:

反比例函数的图像比例的性质

考点名称:反比例函数的图像

  • 反比例函数的图象:
    反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。由于反比例函数中自变量x≠0,函数y≠0,所以,它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
    反比例函数的图像属于以原点为对称中心的中心对称的双曲线,反比例函数图像中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交(y≠0)。

  • 反比例函数图象的画法:
    1)列表:

    (2)描点:在平面直角坐标系中标出点。
    (3)连线:用平滑的曲线连接点。
    当双曲线在一三象限,K>0,在每个象限内,Y随X的增大而减小。
    当双曲线在二四象限,K<0,在每个象限内,Y随X的增大而增大。
    常见画法当两个数相等时那么曲线呈弯月型。

  • k的意义及应用:
    过反比例函数(k≠0),图像上一点P(x,y),作两坐标轴的垂线,两垂足、原点、P点组成一个矩形,矩形的面积。过反比例函数过一点,作垂线,三角形的面积为
    研究函数问题要透视函数的本质特征。反比例函数中,比例系数k有一个很重要的几何意义,那就是:过反比例函数图象上任一点P作x轴、y轴的垂线PM、PN,垂足为M、N则矩形PMON的面积
    所以,对双曲线上任意一点作x轴、y轴的垂线,它们与x轴、y轴所围成的矩形面积为常数。从而有k的绝对值。在解有关反比例函数的问题时,若能灵活运用反比例函数中k的几何意义,会给解题带来很多方便。

    推论内容:一次函数y=x+b或y=-x+b若与反比例函数存在两个交点,若设2点的横坐标分别为x1,x2,那么这两个交点与原点连线和两点之间的连线所构成的三角形面积为

  • 不同象限分比例函数图像:


    常见画法:

考点名称:比例的性质

  • 比例:
    在数学中,比例是一个总体中各个部分的数量占总体数量的比重,用于反映总体的构成或者结构。两种相关联的量,一种量变化,另一种量也随着变化。要想判断两个比式子能不能组成比例,要看它们的比例是不是相等。
    比例性质:
    比例的基本性质:组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。
    在比例里,两个外项的积等于两个内项的积。a:b=c:d\leftrightarrow ad=bc,则有
    证明:




    2.分比性质:
    在一个比例等式中,第一个比例的前后项之差与第一个比例的后项的比,等于第二个比例的前后项之差与第二个比例的后项的比。
    例:已知a,b,c,d∈C,且有b≠0,d≠0,如果,则有
    证明:




    3.合分比性质:
    在一个比例等式中,第一个比例的前后项之和与第一个比例的前后项之差的比,等于第二个比例的前后项之和与第二个比例的前后项之差的比。
    例:已知a,b,c,d∈C,且有b≠0,d≠0,如果,则有
    证明:

    ,则




    4.等比性质:
    在一个比例等式中,两前项之和与两后项之和的比例与原比例相等。
    例:已知a,b,c,d∈C,且有b≠0,d≠0,如果,则有
    证明:

    ,则

  • 重要定理:


    比例尺:
    是表示图上距离比实地距离缩小的程度,因此也叫缩尺。
    用公式表示为:比例尺=图上距离/实地距离。
    1.数字式,用数字的比例式或分数式表示比例尺的大小。
    例如地图上1厘米代表实地距离500千米,可写成:1∶50,000,000或写成:1/50,000,000。
    2.线段式,在地图上画一条线段,并注明地图上1厘米所代表的实际距离。
    3.文字式,在地图上用文字直接写出地图上1厘米代表实地距离多少千米,
    如:图上1厘米相当于地面距离500千米,或五千万分之一。

    比例线段:
    1.两条线段的长度比叫做这两条线段的比。
    2.在同一单位下,四条线段长度为a、b、c、d,其关系为a∶b=c∶d,那么,这四条线段叫做成比例线段,简称比例线段。
    3.一般的,如果三个数a,b,c满足比例式a∶b=b∶c,则b就叫做a,c的比例中项。

  • 比例的美术术语:
    比例通常指物体之间形的大小、宽窄、高低的关系;另外比例也会在构图中用到,例如你在画一幅素描静物就要注意所有静物占用画面的大小关系。
    在画素描的过程中要想把形画准就要注意比例了。

    把握比例的几个技巧:
    1.横着比:当你要画某一个物体的位置时就以此做一条贯穿整个画面的横线,看到所有在这条线上的物体。
    2.竖着比:做一条贯穿画面的垂线,注意观察所有在这条线上的物体。
    3.多看物体、少看画面:为的是形成观察的意识,抛弃大脑中的原始概念。看物体5秒,看画面2秒,眼睛要在画面和物体之间反复的观察比较。
    4.总的说就是放长线、看整体、多比较。把这些想象成经线纬线一样会比较简单;初学者要多画辅助线,等功底深厚了你会发现你画面中的辅助线会越来越少,而你心里假象的辅助线会越来越多。

    在构图中要注意的比例关系技巧:一般被画物占画面百分之八十左右,看上去饱满。
    人物相关比例:
    1.三庭五眼:发际线-鼻底-下巴为三庭,这三段之间每段的距离大约相等;耳根-外眼角-内眼角-内眼角-外眼角-耳根为五眼,它们之间距离大约相等。
    2.站七坐五蹲三半:一个站着的成年人身高大约等于他七个头长(站七),当他座上时就等于五个头长(坐五),蹲着时刚好是三个半头长(三头)。
    3.小孩的头部比例较大,站着时一般为三到四个头高。
    4.张开双臂,两个中指之间的长度大约等于这个人的身高。
    5.手臂的长度为两个头长(腋窝-胳膊肘-手腕各位为一个头长)。
    6.手掌为三分之二头长。
    7.当举起胳膊时胳膊肘刚好到头顶。
    8.肩宽为两个头宽。
    9.脚掌为一个头长。
    10.男人肩比胯宽,而女人跨比肩宽。
    还有很多,可以在生活中多总结,多观察。这些都是标准人体比例,可以帮助初学者入门;
    也是艺术家创作英雄楷模人物绘画雕塑等艺术作品时的指导,例如米开朗基罗的大卫是七个半头高。在现实生活中有形形色色的人,在进行人物素描时就应当个别观察,抓住特征。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐