如图,已知二次函数y=-x2+bx+c的图象经过A(-2,-1),B(0,7)两点。(1)求该抛物线的解析式及对称轴;(2)当x为何值时,y>0?(3)在x轴上方作平行于x轴的直线l,与抛物线交于-九年级数学

题文

如图,已知二次函数y=-x2+bx+c的图象经过A(-2,-1),B(0,7)两点。
(1)求该抛物线的解析式及对称轴;
(2)当x为何值时,y>0?
(3)在x轴上方作平行于x轴的直线l,与抛物线交于C,D两点(点C在对称轴的左侧),过点C,D作x轴的垂线,垂足分别为F,E,当矩形CDEF为正方形时,求C点的坐标。

题型:解答题  难度:偏难

答案

解:(1)把A(-2,-1),B(0,7)两点的坐标代入

解得
∴该抛物线的解析式为
又∵
所以对称轴为直线
(2)当函数值y=0时,的解为
∴结合图象,容易知道时,y>0;
(3)当矩形CDEF为正方形时,设C点的坐标为(m,n),
,即
∵C,D两点的纵坐标相等,
所以C,D两点关于对称轴对称,设点D的横坐标为p,则

∴CD=
∵CD=CF,

整理,得,解得或5,
∵点C在对称轴的左侧,
∴m只能取-1,
当m=-1时,
∴点C的坐标为(-1,4)。

据专家权威分析,试题“如图,已知二次函数y=-x2+bx+c的图象经过A(-2,-1),B(0,7)两点..”主要考查你对  求二次函数的解析式及二次函数的应用,二次函数的图像,正方形,正方形的性质,正方形的判定  等考点的理解。关于这些考点的“档案”如下:

求二次函数的解析式及二次函数的应用二次函数的图像正方形,正方形的性质,正方形的判定

考点名称:求二次函数的解析式及二次函数的应用

  • 求二次函数的解析式:
    最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况:
    (1)已知抛物线上三点的坐标,一般选用一般式;
    (2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
    (3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式;
    (4)已知抛物线上纵坐标相同的两点,常选用顶点式。

    二次函数的应用:
    (1)应用二次函数才解决实际问题的一般思路:
    理解题意;
    建立数学模型;
    解决题目提出的问题。
    (2)应用二次函数求实际问题中的最值:
    即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。
    求最值时,要注意求得答案要符合实际问题。

  • 二次函数的三种表达形式:
    ①一般式:
    y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]
    把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。

    ②顶点式:
    y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。
    有时题目会指出让你用配方法把一般式化成顶点式。
    例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。
    解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。
    注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。
    具体可分为下面几种情况:
    当h>0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;
    当h<0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动|h|个单位得到;
    当h>0,k>0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象;
    当h>0,k<0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;
    当h<0,k>0时,将抛物线y=ax2向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象;
    当h<0,k<0时,将抛物线y=ax2向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象。

    ③交点式:
    y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0有交点时的抛物线,即b2-4ac≥0] .
    已知抛物线与x轴即y=0有交点A(x1,0)和 B(x

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐