已知:如图,抛物线与x轴交于A、B两点(A在B的左侧),与轴交于点C。(1)直接写出a的值;(2)在抛物线的对称轴上是否存在一点P,使得⊙P与轴和直线BC同时相切,若存在,求出点P的坐-九年级数学

题文

已知:如图,抛物线与x轴交于A、B两点(A在B的左侧),与轴交于点C

(1)直接写出a的值;
(2)在抛物线的对称轴上是否存在一点P,使得⊙P与轴和直线BC同时相切,若存在,求出点P的坐标,若不存在,请说明理由;
(3)把抛物线沿x轴向右平移m(m>0)个单位,所得抛物线与x轴交于A′、B′两点,与原抛物线交于点M,当△MA′B′的面积为时,求m的值。
题型:解答题  难度:偏难

答案

解:(1)a=3;
(2)抛物线的对称轴为直线x=2,对称轴与x轴的交点为H,
A(1,0)B(3,0),
设P(2,y)作PD⊥BC,垂足为D,作PE⊥y轴,垂足为E,则PD=PE=2,
∴当P在x轴上方时,

∴∠CBO=30°,GH=
∴∠PGD=60°,
∴PG=,PH=
当P在x轴下方时PH=
∴P的坐标为(2,)或(2,-);
(3)作MN⊥x轴,垂足为N,由平移可知,A′B′=AB=2,
∵△MA′B′的面积为
∴MN=
当y=时,


时,



∴m的值为

据专家权威分析,试题“已知:如图,抛物线与x轴交于A、B两点(A在B的左侧),与轴交于点C。..”主要考查你对  求二次函数的解析式及二次函数的应用,二次函数的图像,直线与圆的位置关系(直线与圆的相交,直线与圆的相切,直线与圆的相离)  等考点的理解。关于这些考点的“档案”如下:

求二次函数的解析式及二次函数的应用二次函数的图像直线与圆的位置关系(直线与圆的相交,直线与圆的相切,直线与圆的相离)

考点名称:求二次函数的解析式及二次函数的应用

  • 求二次函数的解析式:
    最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况:
    (1)已知抛物线上三点的坐标,一般选用一般式;
    (2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
    (3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式;
    (4)已知抛物线上纵坐标相同的两点,常选用顶点式。

    二次函数的应用:
    (1)应用二次函数才解决实际问题的一般思路:
    理解题意;
    建立数学模型;
    解决题目提出的问题。
    (2)应用二次函数求实际问题中的最值:
    即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。
    求最值时,要注意求得答案要符合实际问题。

  • 二次函数的三种表达形式:
    ①一般式:
    y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]
    把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。

    ②顶点式:
    y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。
    有时题目会指出让你用配方法把一般式化成顶点式。
    例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。
    解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。
    注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。
    具体可分为下面几种情况:
    当h>0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐